Isoperimetric Regions in Spaces
نویسنده
چکیده
We examine the least-perimeter way to enclose given area or volume in various spaces including some spaces with density.
منابع مشابه
Referree’s Report Isoperimetric Regions in Spaces
This is a very nice paper, looking at isoperimetric problems in various surfaces, though the paper’s title indicates it considers isoperimetric problems in general spaces. It would be a much better and unified paper, in particular more accessible to undergraduates, if the abstract and title reflected that the results center on abstract surfaces rather than abstract spaces. I would recommend tha...
متن کاملSymmetrization Procedures for the Isoperimetric Problem in Symmetric Spaces of Noncompact Type
We establish a new symmetrization procedure for the isoperimetric problem in symmetric spaces of noncompact type. This symmetrization generalizes the well known Steiner symmetrization in euclidean space. In contrast to the classical construction the symmetrized domain is obtained by solving a nonlinear elliptic equation of mean curvature type. We conclude the paper discussing possible applicati...
متن کاملSharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds
We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...
متن کاملIsoperimetric Inequalities and the Asymptotic Rank of Metric Spaces
In this article we study connections between the asymptotic rank of a metric space and higher-dimensional isoperimetric inequalities. We work in the class of metric spaces admitting cone type inequalities which, in particular, includes all Hadamard spaces, i. e. simply connected metric spaces of nonpositive curvature in the sense of Alexandrov. As was shown by Gromov, spaces with cone type ineq...
متن کاملDiameter-volume Inequalities and Isoperimetric Filling Problems in Metric Spaces
In this article we study metric spaces which admit polynomial diameter-volume inequalities for k-dimensional cycles. These generalize the notion of cone type inequalities introduced by M. Gromov in his seminal paper Filling Riemannian manifolds. In a first part we prove a polynomial isoperimetric inequality for k-cycles in such spaces, generalizing Gromov’s isoperimetric inequality of Euclidean...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006